

YongChunPi Wetland Park Environmental Construction Project

Presenter: Chief Engineer, Chien-chun Wu(吳健羣)

Organizer : Geotechnical Engineering Office, Public Works Department, Taipei City Government(台北市大地處)

Designer : Classic Design and Planning Co., Ltd.(經典工程顧問有限公司)

Supervisor: Chan's Engineering Consultants Co., Ltd.(安笙工程顧問有限公司)

Contractor : Yu Dong Construction Co., Ltd. (郁東營造有限公司)

September 25, 2020.

A wetland from a military site •A stepping stone • A century-old park

Distribution map of protected species and species of concern at and around the project area

GEO

O : **protected species** \triangle : species of concern

Conducting an ecological survey in advance

大冠鷲 Crested Serpent-eagle

鳳頭蒼鷹 Crested Goshawk

領角鴞 Scops Owl

黃嘴角鴞 Mountain Scops-owl

● 台灣藍鵲 Taiwan Blue Magpie

大赤鼯鼠 Formosan Giant Flying Squirrel

GEO

● 藍腹鷴(雄) Blue-bellied Pheasant (male)

龜殼花 Point-scaled Pit Viper

● 藍腹鷴(雌) Blue-bellied Pheasant (female)

● 台北樹蛙 Taipei Tree Frog

白鼻心 Gem-faced Civet

無霸勾蜓 Banded Dragonfly

Original Buildings

.

• A wetland from a military site

There are seven buildings, and three of them will be used for information and tour service station, multifunctional service center, and volunteer offices.

GEO

GEO

A wetland ecological stepping stone from a military site

- During park construction, the white-bellied crakes, kingfishers, whistling thrushes, and black bulbul were observed.
- People joined in constructing the artificial floating island, thus creating more habitats for wading birds and amphibians.

A wetland ecological stepping stone from a military site

Before construction (military site)

Completion of project

Difficulty in land acquisition

PROPORTION OF LAND OWNERSHIP

☑ City-owned land

Through urban planning, the NT\$ 38.9 billion residential area was changed to a park area °

☑ State-owned land

Establishing a cooperative relationship with the Ministry of Defense by signing a MOU of bulk transfer °

Private land

Acquisition of the private land of Liugong Irrigation Association by paying NT\$ 447,955,401.

Difficulty in land acquisition

• Visiting the Ministry of Defense

Geotechnical Engineering Office, Public Works Department, Taipei city Government

Vision Workshop

Features

Yongchunpi Wetland Park layout

Geotechnical Engineering Office, Public Works Department , Taipei city Government

Combining ecology and water conservation

• High capacity of water detention

According to "Taipei City base development standard for runoff discharged into stormwater sewer," the minimum water detention capacity: $39.832m^{2*}0.078m^3/m^2=3.107m^3$

Stationary of instant heavy rain

could last 8.77 hours.

GEO

Flevation of drainage

Flood detention water stage +13

Normal water stage +12.5

Flood detention water stage +14

Normal water stage +13.7

Flood detention water stage +14.5

Normal water stage +14

> Flood detention water stage +15

> > Normal water stage +14.5

Flood detention

IT THE SHEER

water stage +15.8

Normal water stage +15.3

Flood detention water stage +18.5

Normal water stage +17

Flood detention water stage +18.5

Normal water stage +17

Flowing scenery (functional and landscaping)

Greening ecology(functional and landscaping)

Conserving the existing

plants

About 215 trees including mulberry, common garcinia, paper mulberry,

banyan, sweet gum, etc.

 \checkmark Conserving the existing arbors for <u>67.4%</u>.

Growing extra plants

439 strands and 34 species of arbors; 15,650 strands and 25 species of shrubs; 25 species and 32,128 strands of aquatic plants ; green space area: $26,077 \text{ m}^2$

Integration of wetland, life, and landscape

Geotechnical Engineering Office, Public Works Department , Taipei city Government

Plants representing changes of seasons

Changes of weathers, plants, and forests in four seasons.

Changes of Nature Feel the changes of seasons from the changes of 24 solar terms.

Spring

From Feb. to April Taiwan Cherry, Sweet gu m, and Salix kusanoi.

Summer

From May to September

Crape myrtle, tassel, Formosan Ash, Small-leaved Barringtonia, Buttonbush, and Cat-tail.

Autumn and Winter

From October to November

Taiwan Sapium, Tallow tree, Sweet gum, soap berry, and cypre, ss.

Main arbors in Yongchunpi Wetland Park

楓香

Sweet gum Taiwan native species Flowering stage: from February to April Fruiting stage: from April to June

流蘇 Tassel

Taiwan native species Flowering stage: from March to July Fruiting stage: from June to November

臺灣魚木 Spider tree Taiwan native species Flowering stage: from April to June Fruiting stage: from September to November

水社柳 Kusano Willow Taiwan native species Flowering stage: From December to February

Open water

Swamp at shallowed water area

Grassy marsh at shallowed water area

Wetland

Main arbors in Yongchunpi Wetland Park

穗花棋盤腳

/水茄苳 Small-leaved **Barringtonia** Taiwan native species Flowering stage: from July to September Fruiting stage: from January to February

黃連木

Chinese Pistache Taiwan native species Flowering stage: from March to April Fruiting stage: from September to October

烏桕 Chinese Tallow Alien species Flowering stage: from June to July Fruiting stage: from August to October

Open water

Swamp at shallowed water area

Grassy marsh at shallowed water area

Wetland

GEO

Purifying with plants-arbor species(functional and landscaping)

(Source: The Society of Wilderness, Environmental Protection Administration of Executive Yuan, Environment Protection Bureau, Pingtung County, Weng Jinwu (2015), Zhu Minhua, etc. (2018))

	Waterfront arbor				
	Cypress 落羽松	Small-leaved Barringtonia 穗花棋盤腳	Kusano Willow 水社柳		
Taiwan native species 臺灣原生種					
Nitrogen氦					
Phosphorus磷					
Nutrients營養鹽					
Conserving trees with slope protection護坡水土保持樹種					
Flood-tolerant trees耐水淹樹種					

Purifying with plants

水面上的植物組織 光線衰減→抑制植物性浮游生物的生長 影響微部氣候→對溫度的隔絕作用 降低水面風速→避免顆粒再懸浮 02 排出光合作用產生的氧→增進好氧分解 過濾效應→過濾大的顆粒殘骸 水中的莖及葉組織 降低水流速度→增進沉降效果、避免顆粒再懸浮 底泥表層穩定化→減少受侵蝕 防止濕地中礫石間隙的堵塞 底泥中的根及地下莖 營養物的攝取 釋出有機物→促進脫硝作用 **GEO**

Ground grading level

Purification by plants – Aquatic plants (functional and landscaping)

(Source: The Society of Widerness, Meuleman(1994), Lai Enhua(2003)
Environmental Protection Administration, and Compilation of natural water purification methods(2006))

		Aquatic plants				
		Reed蘆葦 (blooming from September to October)	Wild ginger flower野薑花 (blooming from May to November)	Oriental Cat- tail香蒲 (blooming on June)	Cress水芹 (blooming from July to August)	
	Suspended solids(SS) 懸浮固體	• (99%)		• (58%)		
	Biochemical oxygen demand(BOD)生化需養量	• (95%)		(78%)		
	Ammonia氨氮	(97%)		(32%)	(66.67%)	
	Total phosphorus總磷	• (57%)		• (52%)	(73.70%)	
G	Promoting sedimentation of the particles促進入流顆粒 沉降		•			

Eutrophication

On Feb.25, 2019, Professor Wu Junzong, Hou Wenxiang, etc. held meetings for eutrophication.

Status of eutrophication

GEO

Site survey of eutrophication

Total phosphorus tests

Total phosphorus tests

According to "Surface Water Classification and Water Quality Standards" ruled by Environmental Protection Administration – discharge to non-ocean surface water bodies: Bellow 2.0(mg/L) of total phosphorus

• Start of construction: 2018/6/23

• Completion of construction: 2019/12/27

٠

GEO

	Test items		Total phosphorus (mg/L)	
	Sampling date	Confluence (point 3)	Outflow (point8)	Removal efficiency (%)
	2019.3.21	0.034	0.025	26%
	2019.4.22	0.044	0.061	-
	2019.5.28	0.159	0.216	-
Construction phases	2019.6.21	0.153	0.101	34%
	2019.7.24	0.098	0.124	-
	2019.8.28	0.137	0.166	-
	2019.9.25	0.278	0.076	73%
	2019.10.21	0.187	0.352	-
	2019.11.21	0.456	0.056	88%
Completion	2019.12.20	0.259	0.028	89%
6 months after completion	2020.6.19	0.082	0.067	18%
7 months after completion	2020.7.14	0.052	0.039	25%

Up to emission standard

•

BOD: < 10 (Surface Water Classification and Water Quality Standards)

Soils on the site cannot be used for planting

On Nov.20, 2018, invited Professor Zhang Yusen to perform site survey of soil

On April 17, 2019, the site survey of soil along the Shuangxi section of the Keelung River with Hydraulic Engineering Office.

The soils on the site cannot be used for planting

On October 3, 2019, the soils from Shuangxi section of the Keelung River were sent to National Taiwan University Department of Horticulture and Landscape Architecture for soil analysis °

• The analysis result: great for plants.

Utilize the existing resources for sustainable use of materials

Utilize the existing resources for sustainable use of materials

• Filling construction site with building wastes

Classifying reusable materials and crushing them to the size less than 10 cm. Backfilling site with building wastes, thus reducing amount of wastes transportation.

• Making wastes reusable and using them for construction

The excavated pebbles, concrete blocks, thinned woods, etc. reused for construction.

GEO

Difficult to construct landscape

Topographic measurement and application of aerial photography

3D construction models of Yongchunpi Wetland Park

The eco-friendly habitat---kingfisher earth embankment

Kingfishers reappear

The eco-friendly habitat---microhabitat and bird stands

Birds on wood stands

GEO

Microhabitat for aquatic animals

Environmental education---tree planting

On November 14, 2019, Mr. Chen Hung-Kai taught tree planting.

Environmental education---making artificial floating islands

On August 11 and 18, Mr. Chen Te-Hung from the Society of Wilderness and people made artificial floating islands.

Environmental education---Removing invasive species

• On May 30 and 31, 2020, Mr. Chen Te-Hung and some enthusiastic people removed invasive species such as mile-a-minute weeds and apple snails.

mile-a-minute weeds (invasive specie)

The beautiful Yongchunpi Wetland Park

Night Views at Yongchunpi Wetland Park

GEO

Night Views at Yongchunpi Wetland Park

The Sawdust Trails

The Spiral Landscape

Landscape of Stones and River

The Beautiful Sawdust Trails and Cypresses

Service and Tour Station

Multifunctional Pavilion

Volunteer Office

Changes Come True

Before Construction

During Construction After Completion

臺北的生態棲地保護區

