Flood Control of Wastewater Service in Tokyo

Second Tachiai River Pipe (Shinagawa Ward) already used as a temporary storage

Yoshinari Nakajima JSWA

TIWEF

Tokyo Downtown: 23-Ward Area

Overview of Sewerage Plan & Facilities

Design population: 8,692,000 Sewered area: 57,839 ha pumping stations: 91 **WWTPs: 16** Design flow: 6,090,000 m³/d Sewer length: 16,112 km As of March 2019

Rainfall Intensification in Tokyo

O Rising frequency of rainfalls over 50mm/hO Very heavy rain in a short period of time

July 23, 2013)

Over 700 houses flooded

Annual frequency of rainfall over 50mm/hr Year (Source: Japan Meteorological Agency)

Floods in Tokyo

O Most are urban floods in recent years.

Goals of Flood Control and Responsibilities

O No flood for 60mm/h

- O No floor flood for 20-year storm, 75mm/h in downtown & 65mm/h in western suburb
- O Life protection for over the planed storms

Adaptation by Structural Solutions

▲ Wada Yayoi Trunk Sewer provided along the Kanda River, which floods extensively (inner diameter of 8.5 m; storage capacity of 150,000 m³)

▲ Minamisuna Rainwater Reservoir with multiple dwelling units above for the effective use of space (storage capacity of 25,000 m³)

Structural Solutions

O Build sewerage facilities for 50 mm/h rainfalls

O Increase the capacity to 75 mm/h for extensive underground shopping streets & areas where severe damage occurred

Sewer for storing rainwater (Tagara and Sakuragawa, Nerima Ward) Pumps for rainwater (Kamiya, Kita Ward)

Structural Solutions

I – 1 Priority to drain 50 mm/hr rainfall events

- i. Valley & Hill Bottom
- ii. Sewer-shed for shallow depth trunks
- <u>I 2</u> Priority to severely flooded areas from 50 mm/hr or over
 iii. Upgrade for 50 mm/h or over
- I 3 Priority to drain 75 mm/hr
 - iv. Augmentation of shallow depth trunks
 - v. Extensive underground shopping streets

Priority to drain 50 mm/h

Water level

Sewer surcharge and flooding at valley & hill bottom

Sewer-shed of shallow trunks

Surcharged shallow trunk cause backflow to collectors leading to floods at valleys.

Solution to shallow trunks

Install a new trunk to prevent surcharge and flooding

To drain 50 mm/h or over

- New trunks complement existing facilities to reduce flooding even from rainfall with 50 mm/h or over
- Expedite completion of planned projects ASAP

To drain 75mm /h; flooded areas with 50mm/h sewer capacity

O Build facilities that prevent sewer flood from 75mm/h rainfall

To drain 75mm/h; underground shopping streets

O Build facilities to prevent runoffs from entering underground shopping streets from 75 mm/hr rainfalls

Rainfall of 75 mm/hr

Other Solutions

O Storage by uncommissioned trunk sewers

O Install small bypass line

O Install catch basins in partnership with road authority

Where sewer discharge is regulated due to uncompleted river flood defense

Additional catch basins

Project Sites

O 16 completed out of 54

Nonstructural solution 1

O Facilitate citizen evacuation to reduce damages

"Tokyo Amesh"; highly accurate rainfall gauge system

April 2016: Upgrade to the latest radar

- Display mesh: 500 m \Rightarrow 150 m
- Rain strength: 8 levels ⇒10 levels

April 2017: distribution of smartphone version

- Better usability and visibility
- GPS function to display the current location

Nonstructural solution 2

- Publication of flood maps in corporation with river administrators
- In case of Kanda River with most floods, Japanese record high rainfall intensity was used

Flood map for Kanda River basin (revised)

Target rainfall

Before revision: 2000 Tokai Torrential Rain Maximum rainfall: 114 mm/h Total rainfall: 589 mm

After revision: assumed maximum precipitation Maximum rainfall: 153 mm/h Total rainfall: 690 mm

Thanks for your attention.

This presentation was made possible by courtesy of Sewerage Bureau, Tokyo Metropolitan Government. All the copyrights of pictures and images belong to the Sewerage Bureau.